Pulmonary hypertension

Read more about this disease, some with Classification – Types – Signs and symptoms – Genetics – Pathophysiology – Diagnosis – Screening – Prevention – Treatment and management – Cures and much more, some including pictures and video when available.

In medicine, pulmonary hypertension (PH) is an increase in blood pressure in the pulmonary artery, pulmonary vein, or pulmonary capillaries, together known as the lung vasculature, leading to shortness of breath, dizziness, fainting, and other symptoms, all of which are exacerbated by exertion. Pulmonary hypertension can be a severe disease with a markedly decreased exercise tolerance and heart failure. It was first identified by Dr. Ernst von Romberg in 1891.[1] According to the most recent classification, it can be one of five different types: arterial, venous, hypoxic, thromboembolic or miscellaneous.[2]

Because symptoms may develop very gradually, patients may delay seeing a physician for years. Common symptoms are shortness of breath, fatigue, non-productive cough, angina pectoris, fainting or syncope, peripheral edema (swelling of the limbs which commonly manifests around the ankles and feet), and rarely hemoptysis (coughing up blood). Pulmonary arterial hypertension (PAH) typically does not present with orthopnea or paroxysmal nocturnal dyspnea, while pulmonary venous hypertension typically does.

In order to establish the cause, the physician will conduct a thorough medical history followed by a physical examination. A detailed family history is established to determine whether the disease might be hereditary|familial. A history of exposure to drugs such as cocaine, methamphetamine, alcohol leading to cirrhosis, and smoking leading to emphysema are considered significant. A physical examination is performed to look for typical signs of pulmonary hypertension, including a loud P2 (pulmonic valve closure sound), (para)sternal heave, jugular venous distension, pedal edema, ascites, hepatojugular reflux, clubbing etc. Evidence of tricuspid insufficiency is also sought and, if present, is consistent with the presence of pulmonary hypertension.

Because pulmonary hypertension can be of five major types, a series of tests must be performed to distinguish pulmonary arterial hypertension from venous, hypoxic, thomboembolic, or miscellaneous varieties.

A physical examination is performed to look for typical signs of pulmonary hypertension. These include altered heart sounds, such as a widely split S2 or second heart sound, a loud P2 or pulmonic valve closure sound (part of the second heart sound), (para)sternal heave, possible S3 or third heart sound, and pulmonary regurgitation. Other signs include an elevated jugular venous pressure, peripheral edema (swelling of the ankles and feet), ascites (abdominal swelling due to the accumulation of fluid), hepatojugular reflux, and clubbing.

Further procedures are required to confirm the presence of pulmonary hypertension and exclude other possible diagnoses. These generally include pulmonary function tests, blood tests to exclude HIV, autoimmune diseases, and liver disease, electrocardiography (ECG), arterial blood gas measurements, X-rays of the chest (followed by high-resolution CT scanning if interstitial lung disease is suspected), and ventilation-perfusion or V/Q scanning to exclude chronic thromboembolic pulmonary hypertension. Biopsy of the lung is usually not indicated unless the pulmonary hypertension is thought to be due to an underlying interstitial lung disease. But lung biopsies are fraught with risks of bleeding due to the high intrapulmonary blood pressure. Clinical improvement is often measured by a “six-minute walk test”, i.e. the distance a patient can walk in six minutes. Stability and improvement in this measurement correlate with better survival. Blood BNP level is also being used now to follow progress of patients with pulmonary hypertension.

Diagnosis of PAH requires the presence of pulmonary hypertension with two other conditions. Pulmonary artery occlusion pressure (PAOP or PCWP) must be less than 15 mm Hg (2000 Pa) and pulmonary vascular resistance (PVR) must be greater than 3 Wood units (240 dyn•s•cm-5 or 2.4 mN•s•cm-5).

Although pulmonary arterial pressure can be estimated on the basis of echocardiography, pressure measurements with a Swan-Ganz catheter provides the most definite assessment. PAOP and PVR cannot be measured directly with echocardiography. Therefore diagnosis of PAH requires right-sided cardiac catheterization. A Swan-Ganz catheter can also measure the cardiac output, which is far more important in measuring disease severity than the pulmonary arterial pressure.

[tubepress mode=’tag’, tagValue=’Pulmonary hypertension’]